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Abstract

This paper deals with the formalism of local twistors, which has developed from the
twistor algebra, and extends some of the basic twistor concepts to curved space-time,
Essentially, the central ideas are to define a twistor space at each point of the space-
time, and to define a covariant derivative so that an operation of local twistor transport
is possible; this leads to the definition of a conformally invariant curvature twistor. In
an appendix, some conformally invariant spinors are discussed.

1. Preliminary Discussion and Twistor Summary

The formalism of local twistors has been developed as a inethod of applying
the concepts of twistor algebra to curved space-time, since in the process of
adapting these concepts to curved space-time certain difficulties become
apparent; in fact, generalisation of the space of flat space-time twistors (global
twistors), leaves it with only a weak symplectic structure, instead of the linear
and complex analytic structure with which it is endowed in flat space-time; also,
twistors which are non-null do not have a precise geometrical interpretation in
curved space-time (Penrose, 1972a, b). These difficulties have led to considera-
tion of other factors, still broadly based on underlying twistor motivations,
resulting in the study of local twistors and asymptotic twistors. The local
twistor theory, leading to the definition of a conformally invariant curva-
ture twistor, is expounded in this article.

As stated above, in flat space-time twistor space possesses a linear and a
complex analytic structure; the space of one-index twistors Z% can be split
up into the subspaces of twistors Z¢ for which Z%Z, = 0 (null twistors; Z,,
is the complex conjugate of Z%), and those twistors Z¢ for which Z2Z_, # 0.
The null twistors can be represented as null straight lines in a suitably com-
pactified Minkowski space-time, and the non-null twistors can be represented
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32 K. DIGHTON

as null congruences (Robinson congruences) in this Minkowski space-time
(Penrose, 1967, 1968a).
It can be shown that twistors in flat space-time can also be represented in

spinor terms as solutions of the equation:

V¢ =0 (1.1)
which implies the existence of a constant spinor 74 such that:
V4w =—ie Py (1.2)
with
Vaa'mg =0 (1.3)

A twistor Z% in flat space-time is then represented as Z% = (w?, 74°) and in
some spin-frame:
z%=0° Z'=w', Z'=ny, Z’=uy

In order to make explicit the relationship between twistors and spinors, and
to keep track of the indices in an expression containing both twistors and
spinors, projection and injection operators (spinstors) have been introduced
(Qadir, 1971); a twistor Z% may then be written:

Z%=eGwt +e* ny (1.4)
with complex conjugate:

Z,=eqa @ teiny (1.5)

A spinstor therefore is endowed with a twistor and a spinor index (primed or
unprimed).t In terms of components with respect to a local basis:

e®arefg=el =1 oA 20 =31 o
all others vanish. The following relationships hold:
euelo=el =1 e ey ey =1

all other vanish. The following relationships hold:

eaAeBa =€AB :eBaeaA

eaA'e"LB =€ A'B = e“BeaA' contraction over twistor
' ' index o
e"‘AeBa=eBae°LA =0 ndex
€y eAﬂ + 4 egq' = 8% contraction over spinor

indices 4, A’

1 The notation for indices used here is that lower case Roman indices denote tensors,
upper case Roman indices (primed or unprimed) denote spinors, and Greek indices denote
twistors; components in some basis are denoted by bold indices.
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Under a conformal rescaling, i.e. g5~ 845 = Q?g,,, where £ is a smooth,
positive scalar field on the space-time, it can be shown that the equation
V@8 =0 is invariant, i.c.

V) =0=T@ B =0
where @P = w® (Penrose, 1972a), and the vector £2 = w8 &% is a null con-
formal Killing vector. The conformal invariance of the equationV 44 w® =
~ie, Bm, then implies that 714 = my +iypa B where v, = Q71V,Q, and
it follows that V44 frg' = iPgpup P wheret

Pup = 3Rap — 12R8amp
with

Papa's =Papa's +Vaa'YBB — YAB'VBA'
Hence under a conformal rescaling of a flat space-time (for which P, = 0),

the covariant derivative of the spinor 74 picks up a curvature term, and the
equation:

Vaa 78 =iPapy g P (1.6)

is conformally covariant; in flat space-time it clearly reduces to (1.3). The
conformally covariant spinor equations (1.2) and (1.6) will subsequently be
encountered in the definition of a local twistor covariant derivative.

2. Local Twistors

In order to surmount some of the difficulties involved in adapting the theory
of twistors to curved space-time, it is proposed that a twistor space be defined
at each point of the space-time—thus a theory of local twistors is generated.
However, this procedure introduces the points of the space-time into local
twistor theory in a fundamental way, and there seems to be no obvious method of
subsequently eliminating this dependence, which is rather alien to the spirit of
twistor theory because for the purposes of this theory the attitude is adopted
that it is the twistors themselves which are the basic entities, and space-time
points are evolved at a later stage in the development of the theory (Penrose,
1972a). The local twistor theory is built up by using the spinor approach, and
alocal twistor Z* at a point x of a curved space-time is represented as a pair
of spinors w? and 74 defined at x. The local twistor space at each point is a
fibre of the local twistor bundle, the symmetry group of which is SU(2, 2),
and the typical fibre is the space of global (flat space-time) twistors; local
twistor space therefore has a linear and a complex analytic structure defined
on it.

} The convention for curvature adopted here is that:

[Ve, Valtp = Ro%paity

and Rdadb =Rab;in Spin()l‘SRABA’B’ = —Z(DABA'E’ + 6A€AB€A'B’ and PABA‘B' =
Aeypeqs’'B — ©apa'p (see Penrose, 1968b).
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A local twistor Z% may be expressed in terms of its spinor parts thus:
7%=, 74 + 47, .1
where the operators e® 4, e*4 are as defined above, and in general give a non-

constant correspondence between the spinor parts and the local twistors. (In
equation (2.1) Z 4 is a spinor such that in flat space-time Vgg'Z4 = —ieg Zg').

Under a conformal rescaling, the local twistor Z% is invariant:
YAy Ly
whilst the spinor parts transform as follows: Z4 »Z4=74and Z 4 Z 4=
ZA' + i’)/BA’ZB.
Hence the spinstors e , e*4 undergo the following transformations:
ety > ey = ety iy, g et (2.2)

e > god’ - o (2.3)
The complex conjugate expressions are:
4, é4, = el 24
eoa’ > bon’ = ou tivpy €, 2.5)
Using these results it immediately follows that:

5355 = 8a‘5 (26)

3. Covariant Derivative
The local twistor covariant derivative is defined by the equation:
V% = €R,eS Uy (3.1)

where Vgg' is the spinor covariant derivative. The derivative (3.1) is the most
obvious one to choose, and has a number of desirable properties, but it does
not span the space of two-index local twistors, since a general two-index local
twistor would have four non-zero spinor parts; as will be seen, the definition
(3.1) leads to consideration of a six-index conformally invariant curvature
twistor with only three non-zero spinor parts. V9, defines a mapping of local
twistor spaces:
2

Vi T§Rd T 68,
and satisfies linearity and the Leibniz rule, This covariant derivative also
commutes appropriately with contraction, complex conjugation, and index
substitution, and has the additional properties:

0 vy P = S PR =
vcrp _vpa_eaep VSR' =V*
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ie.
V% =V % (hermiticity), and V% =eR e Ve =0

A further important requirement is that the local twistor theory should be
compatible with the global twistor theory of flat space-time, and for this
reason two more properties of the local twistor covariant derivative are
specified, thus:

(1) if the space-time is conformally flat, the equationV°,Z* = 0 has four
linearly independent solutions over the field of complex numbers C ,
which correspond to global twistors, i.e. the covariant derivative is
integrable;

(2) the covariant derivative of a local twistor is conformally invariant, i.e.

a _70 7
VoZ* =V Z%
These conditions are both satisfied by selecting a derivative which acts on the
spinstors as follows:

H

- oB
Vrs€®q = —iPras'p € (3.2)
VRs'eaA = ies’A €QR (33)
with the complex conjugate expressions:

Vks' €ad’ = iPrps 4'€ % (3.4)
vRs'eAa = ——l'GRAEO(S’ (3.5)

these equations being conformally covariant; unfortunately, it is unclear as to
whether this procedure leads to a unique definition of a covariant derivative
with the specified properties, but there seem to be no other simple spinor
expressions which would suffice (presumably spinor terms involving the Weyl
spinor W 4gep and its derivatives could be involved).

To show that the covariant derivative of Z% has the stipulated properties,
it is necessary to calculate the spinor parts of the derivative, as follows:

V2% =R, &% Vpg(e®y Z4 + 4 Z )
=R %S (e (Vrs' Z +ieg™Zs')
+e* (Vrs' Za' — iPros'a Z5)}

using equations (3.2)-(3.5).

Therefore, the spinor parts of the covariant derivative are just the con-
formally covariant spinor equations (1.2) and (1.6) discussed earlier, and the
conformal invariance of V°,Z% stems from the covariance of these equations
and that of the equations (3.2)-(3.5).

The spinor equations (1.2) and (1.6) which form the spinor parts of the
local twistor covariant derivative define the operation of local twistor trans-
port, which in flat and conformally flat space-times can be shown to be related
to the operation of conformal Killing transport (Geroch, 1969, 1970). More
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specifically, if £ = w? &4 is a null conformal Killing vector, and the con-
formal Killing transport equations for £ are written in spinor form, in con-
formally flat space-time they are the same spinor equatlons as those defining
the local twistor transport of a local twistor Z% = (w*, 4') where
Ves' wi = —ieg?ng'. It is hoped to extend this idea in a later paper.

The integrability condition for V?, follows from the fact that in conformally
flat space-time, spinors Z4, Z 4+ can be found such that:

VRS'ZA = ~i€RAZS' and VRS'ZA' = iPR_Bs’A’ZB

so that the local twistor Z¢ defined from Z4 and Z 4 obeys the condition
V"pZ %= (. Also, by a suitable conformal transformation, Prgg'4’ = 0 when
Vrs'Z4 = 0. Then

where x is the position vector of the point x with respect to the origin O.
Further, considering the equations defining the derivative of a spinstor, and
by a suitable conformal transformation, Vrs' €*4 =0. Hence, there exist
solutions of the spinstor equations given by:

It is then evident that Z%= g @ ie,Z” defines a global twistor through O and
x

the covariant derivative is integrable.

4, Torsion and Curvature

A consequence of the equations (3.2)-(3.5) is that there exists a torsion
twistor, L.e. [V*, V7,16 % 0, for a scalar function ¢, since V%,¢ =%, €™ Vs ¢,
and the second denvatlve is:

V4 V%0 = ey e V(€ ™ Vrs®)
= by &M (R, ™ Vpar' ps @ — i€pnr€” S erR rs ¢
+ie LeRp eM' VRs'qS)
Then
[VAV %10 = 1(6 AV, — 8¥,7°0)8 = THGEV ad
where
TS = 16,06,°84" - 5516) @)
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is the torsion twistor and has the following properties:
® TXos = T1o5 ] 4.2)
The brackets here are interpreted as follows:
WG] = 3(Wgk — Wag)

also VY =3(VEL + V)
(i) o8 =0 (4.3)
(iif) TN = i(48%,8% — 8%,8%) (4.4

(iv) T{g§ is hermitian, i.e.
Thog = TES8 (4.5)
where
TH = Tisk

(v) T{5¢ is conformally invariant, i.e.

~ HOQ
Thes = Troi ¢
This follows from (2.6).
(vi) T{5§ is covariantly constant, i.e.
VITRE =0 4.7

this being essentially due to the fact that V*,6% =0, which is easily
demonstrated.

The second derivative and commutator of derivatives of a local twistor Z¢
can be calculated and expressed in terms of spinor parts. The commutator in
fact becomes:

V¥,V 9%,12% = CRag 2° + TEG VA, 2° (4.8)
where
CLog = ely et R e (e {[Vinr, Vs 124
+ (e Pres'u’ — €& Prams )25} + e {[ Vi, Vrs 1 Za
+PrroqaZs’ — Prrs'a'Zyr — iZ5(Jiar Pris s —
x VRS Prpra)}t } (4.9)

The spinor parts of this expression can be simplified by using the following
lemmas:

Lemmal

4 4 .
[(Veum Vrs'1Z2 + (e, Pres'y — € PLaws' )28 = eyrs Vst g 28
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Proof:
[Viwr, Vrs'1Z4 = eyrs'DOrr 24 +epr Oypg Z4
where:
Orr = Vy'aVE)
O.rZ4 = (V5" 1r — 2Aepger )28
s Z4 = dgtyrs 28 (Penrose, 1968b)
The result then follows since the terms in A disappear due to the skew-
symmetry of the metric spinor, and the terms in ® 44 reduce to a spinor
expression skew in three indices.
Lemma I1
[Vere -V rs'1Za' + Prrar aZs' — Pros'a'Zay = erp Y2 ars'Zy
The proof is similar to that in Lemma 1.
Lemma IIT
VrsPLawa’ — ViwPras'a’ = es V¥4 ¥xrip + eriV¥ s Vxmrsa
Proof
The spinor Bianchi identity may be written:
V¥ U xrie =V g Preara’ — 2 €rg V' A
Using the symmetry properties of the Weyl spinor, it follows that:
¥y Vxrip =~V RPravra’ —V° LPrBS A’
and from the properties of the metric spinor:
2 egr V¥ 4V xrrm =
(Vrs'Premra’ — Vim'Pres'a’) — (VruPres'a’ — Vis'Prema’)

The required result is obtained on taking the complex conjugate of this, and
combining the two expressions.
Collecting these results together,

uoa 73
CNJ}BZ )
elae™M &R 6% (e (eprs V5" LR ZE) + € [er VP 4mrs'Zpy
+iZB(eyrs VX4 ¥ xrin + €ri¥ X8V xarsa)l}
and

-

, , 4 o X =
ehaetM R e [eBsle®y eprs Wpip + i€ (ertV X sV x s a’

+es V4 U xrrn)l +egpe™ err WP 4urs'} (4.10)
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However, Chog is anti-hermitian, i.e. Chos = -E’fgg, so that the curvature
twistor is defined as follows:

K fgg‘ = iCi‘gg {(4.11)
which is hermitian. Hence:
[VH\.V Op1 2% = —iK {08 2P + TSV, 7% (4.12)
with the conjugate expression:
(VA Vo1 Za = KSR Z g + TETYV", Z,  (4.13)

It can be seen that the spinor parts of the curvature twistor involve, apart
from the metric spinor, only the Weyl spinor and its contracted first deriva-
tive, together with the complex conjugates of these. The main properties of
the curvature twistor are summarised below:

(i) skew-symmetry:
K{E=K[551%: K[&sg1=0 (4.14)
(ii) contraction on any two indices gives zero:
Kios = (4.15)
(iii) in conformally flat space-time K fgg =0;
(iv) K§pg is hermitian, by definition;

(v) K§3% is conformally invariant.

Consideration of the expressions V["‘QV“BV‘Q] ¢ and V [}V #7712
leads to two further identities satisfied by the curvature twistor;these are:

oy ’
(877K lgy + 8% Kiye + 84 K2E) 70 = 0
and
VKB e + T2 oK™ 155 =0
The corresponding tensor indenities are:
Riapef + ViaTpel’ + Tias Tep? = 0
and
v[aRbc]dx + T[abyRc]ydx =0
where ¥/, is now a covariant derivative with torsion; note that in the first

local twistor identity the/ 7, ¢ cannot be cancelled out since it does not span
the space of two-index local twistors.
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A torsion-free derivative>%, can be obtained fromV°,; the defining
equations are as follows:

i

2=V %2~ 2 6%2°
; (4.16)
O W=V We + 5 5% W,
and
%9=V7%¢ (4.17)
A simple calculation shows that: [>#a, 3% 16 = 0. It also ensues that:
[OENO 1 2% = —ih {5828 (4.18)
where
A Ko = KEg — aTheg (4.19)

Ko is the curvature twistor associated with the operator {>%: evidently,
A §5% does not vanish in general in flat space-time (since T4g5 is non-zero),
and therefore >, is non-integrable in flat space-time.

Appendix
Generation of Conformally Invariant Spinors

In this appendix, it will be shown that conformally invariant spinor
expressions can be generated by use of the local twistor covariant derivative.
It will be seen that some of the spinor expressions obtained here can be
generalised; the main spinor results are stated in Lemmas Al, All, and AIlL

A general (non-zero) local twistor defines at least one non-zero conformally
invariant spinor, which is obtained by expressing the local twistor in terms of
its spinor parts, and locating the spinor expression with the greatest number
of ‘contravariant’ indices; consider, for example, a non-zero local twistor
WY, which may be expressed in terms of its spinor parts thus:

Wa{g’y = €Oi4 eQB*eVCWAB’C + e"‘A}eEB*e"CWA’B ¢

+ eaAeBBeychBC TN

If wAB C is non-zero, then it is conformally invariant; if WABIC =0 then each
of WA'B C, WABC, WAB'CI is conformally invariant, and if they are all zero the
process may be repeated until a conformally invariant spinor is obtained
(there must ge at least one if W7 #0). Applying these considerations to
the twistor Ko shows that eypg ¥ g and eg W5 yyrs are both con-
formally invariant. Forming the covariant derivative of K&a§ does not im-

mediately lead to a new conformally invariant spinor due to the torsion terms,
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but these terms may be eliminated by suitable symmetry and skew-symmetry
operations. When this procedure is carried out, a local twistor with one spinor
part is obtained, and it can be shown that this spinor expression is essentially
the spinor defined by the Bach tensort. Hence, the spinor is termed the Bach
spinor, and the twistor produced from it is the Bach twistor. The calculation
is outlined below:

v o .. VMO 3
VY KAgE = WAGE + torsion terms
where:
VRO
Wrkes =
, ' , , )
el by et eR e (€Bpe [enrs (€an' ANVBrLR — Prana VE Lr
TRV 2 S, )+ AT g — Ui BB e
'V a¥Yxrip) t€Lr(EBT AV A MN'S enBY a'm's
+ U VX o T gy n)
™V BY x5
. B = . . .B X
+egpe®y[—ieLRV 1V g rns' —ien” ers’V 4 YxreT)
O : A - A X &
+ P56 lieys VAN Varir +ier epqV ™ 5 VUxnrns']
L B g 4 4. TB'
tegn €%y len” ey Vr'r +er epg VE yrng]} (A1)
Then
[vu]oa _ N’ M o8’ A
Wiralos = Bragg = ¢ TreN e R e {Bge* {earnersBrra's’}

where

B = BIAJSS =BGRHGD (A2)
is the Bach twistor, and
Bpras' = Baryws'y = (Va Vs — PEE)Vprxy
is the Bach spinor.

1 The Bach tensor is defined by:
b =V NV g — ¥ pa  (Szekeres, 1968)

It is of interest in the present context since it transforms under conformal transformation
as a conformal density of weight —2, i.e. Bab ©72B,;, and is algebraically independent
of the Weyl tensor. It is represented in spinors by:
Bapa'B =QaBa'E tQ4B4A'R
where
D CD
Qapa's = 0apa'n = V4P — PV anep

The Bach tensor has the additional properties (which are readily seen in its spinor form),
that: Byp = B(ap), and V4Bgp = 0.
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The spinor result can be generalised as follows:

Lemma AF
(VA VB, — P48, xup... 1 transforms under a conformal rescaling as a
conformal density of weight —2, where x4p... 1 is a totally symmetric spinor
with ¢ indices (g = 2), and which is conformally invariant, i.e.
XAB...L = X(4B...L) = XaB...L

The result can be proved directly by spinor methods, or by constructing the
local twistor

Hoo _ vy {uo]a _ Moo
Yoo . n= Yigys..n = Yyl .. n
such that:
Yhs a=eMe®S Brel el {eienms X e 1
' X
+e* eyrs V4 xxpe... 1}
and considering the derivative V/ {? Y, ;’;11) 4P

Another example of a conformally invariant spinor expression is obtained
by contracting the curvature twistor K{g§ with the totally skew twistorf
€006 ; @ local twistor with one spinor part only is then formed:

€uoad K fgﬁ‘ =2 q’hpﬁ&
where
Uypps = €0 02565V = ¥ (o88)

From this local twistor a hermitian, eight-index, valence {2] local twistor can
be defined:

waﬁ'y& \FKMW = ‘I/geé\#g = ‘r’gé\#g
On forming the derivative: V“p‘lfggsg and taking skew-symmetries on the
indices p, o and ¢, k the following spinor result is obtained:

Lemma All —x
$XA'B'C'VXX"I’XABC - \IIXABCVXX ¥ g is a conformal density of
weight —2. This expression may be further refined to give the more general

result:

Lemma AIll , ,
The expression Bx'7, 30w’V X axy ¢ — axa... oV X Bxp. v isacon
formal density of weight (2n — 2), where 8x;' ' is a totally symmetric

- . ] : . ;
i Cpoald © €[uoas]; e#aage”m = 24. The spinor parts of this twistor are of the
form egrg e4 2.
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spinor of valence [2], g = 1, and is a conformal density of weight », and
x4 ¢ is a totally symmetric spinor of valence [g], p=1,andisalsoa
conformal density of weight n.
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