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Abstract 

This paper deals with the formalism of local twistors, which has developed from the 
twistor algebra, and extends some of the basic twistor concepts to curved space-time. 
Essentially, the central ideas are to define a twistor space at each point of the space- 
time, and to define a covariant derivative so that an operation of local twistor transport 
is possible; this leads to the definition of a conformally invariant curvature twistor. In 
an appendix, some conformally invariant spinors are discussed. 

1. Preliminary Discussion and Twistor Summary 

The formalism of  local twistors has been developed as a method of  applying 
the concepts of  twistor algebra to curved space-time, since in the process of  
adapting these concepts to curved space-time certain difficulties become 
apparent;  in fact, generalisation of  the space of  flat space-time twistors (global 
twistors), leaves it with only a weak symplectic structure, instead of  the linear 
and complex analytic structure with which it is endowed in flat space-time; also, 
twistors which are non-null do not  have a precise geometrical interpretat ion in 
curved space-time (Penrose, 1972a, b). These difficulties have led to considera- 
tion o f  other factors, still broadly based on underlying twistor motivations,  
resulting in the study o f  local twistors and asymptot ic  twistors. The local 
twistor theory,  leading to the definit ion of  a conformally invariant curva- 
ture twistor,  is expounded in this article. 

As stated above, in flat space-time twistor space possesses a linear and a 
complex analytic structure; the space o f  one-index twistors Z ~ can be split 
up into the subspaces of  twistors Z a for which ZuZ¢~ = 0 (null twistor_s; Z~ 
is the complex conjugate of  Z~),  and those twistors Z a for which ZaZa ~ O. 
The null twistors can be represented as nuI1 straight lines in a suitably com- 
pactified Minkowski space-time, and the non-null twistors can be represented 
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32 K. DIGHTON 

as null congruences (Robinson congruences) in this Minkowski space-time 
(Penrose, 1967, 1968a). 

It can be shown that twistors in flat space-time can also be represented in 
spinor terms as solutions of  the equation: 

= o (1.1) 

which implies the existence of  a constant spinor n A , such that: 

~7 A'coB = - - i e A B  TrA ' (1.2) 

with 

VAA'rrB' = 0 (1.3) 

A twistor Z ~ in flat space-time is then represented as Z a = (co A, rr A ") and in 
some spin-frame: 

z O  =co  O, Z1 =(.01, Z 2 = T r o  ,, Z 3 = ~ l  , 

In order to make explicit the relationship between twistors and spinors, and 
to keep track of  the indices in an expression containing both twistors and 
spinors, projection and injection operators (spinstors) have been introduced 
(Qadir, 1971); a twistor Z ~ may then be written: 

Z a = e~ co A + e c~4'rr A' (1.4) 

with complex conjugate: 

= A' +4 A (1.S) 

A spinstor therefore is endowed with a twistor and a spinor index (primed or 
unprimed).t In terms of  components with respect to a local basis: 

e~A: e00 = e l l  = 1; e O . ~ ' : e 2 O ' = e 3 f =  1 

all others vanish. The following relationships hold: 

e A. e°o = e l l  = 1" . e20, = e31' = 1 

all other vanish. The following relationships hold: 

e %  eBo~ = GA B = eBo~e% ) 
t i F 

e~A ieaB = ~A  ,B  = e ~  e~A , contraction over twistor 

e ~A eea = eB~ e ~A' = 0 index a 

eaA eA3 + e ~A'e3A' = 6 ~  contraction over spinor 
indices A ,  A ' 

The notation for indices used here is that lower case Roman indices denote tensors, 
upper case Roman indices (primed or unprimed) denote spinors, and Greek indices denote 
twistors; components in some basis are denoted by bold indices. 
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Under a conformal rescaling, i.e. gab -+gab = ~2gab, where ~ is a smooth, 
positive scalar field on the space-time, it can be shown that the equation 
~(AA, CO B) = 0 is invariant, i.e. 

= o co = o 

where c~ B = COB (Penrose, 1972a), and the v e c t o r  ~b = ooB~gB" is a null con- 
formal Killing vector. The conformal invariance of  the equation VAA' • = 
--ieABgA ' thenimplies that 5A' = 7rAt + i~[BA ' cOB where ")'a = ~ ~ - l V a  ~2, and 
it follows that VAA' #B' = iPADA'B 'dph wheret 

Pab = ½Rab -- h R g a b  

with 

PABA'B' = PABA'B' + V A A  '~'BB -- "[AB'TBA' 

Hence under a conformal rescaling of  a flat space-time (for which Pab = 0), 
the covariant derivative of  the spinor 7r A, picks up a curvature term, and the 
equation: 

\TAA, 7rB , = iPADA,B, cOD (1.6) 

is conformatly covariant; in flat space-time it clearly reduces to (1.3). The 
conformally covariant spinor equations (1.2) and (1.6) will subsequently be 
encountered in the definition o f  a local twistor covariant derivative. 

2. L o c a l  Twi s tor s  
In order to surmount some of  the difficulties involved in adapting the theory 

of  twistors to curved space-time, it is proposed that a twistor space be defined 
at each point of  the space-time-thus a theory of  local twistors is generated. 
However, this procedure introduces the points of  the space-time into local 
twistor theory in a fundamental way, and there seems to be no obvious method of  
subsequently eliminating this dependence, which is rather alien to the spirit of  
twistor theory because for the purposes of  this theory the attitude is adopted 
that it is the twistors themselves which are the basic entities, and space-time 
points are evolved at a later stage in the development of  the theory (Penrose, 
1972a). The local twistor theory is built up by using the spinor approach, and 
a local twistor Z ~ at a point x o f  a curved space.time is represented as a pair 
of  spinors w A and 7r A' defined at x. The local twistor space at each point is a 
fibre of  the local twistor bundle, the symmetry group of  which is S U ( 2 ,  2), 
and the typical fibre is the space of  global (flat space-time) twistors; local 
twistor space therefore has a linear and a complex analytic structure defined 
on it. 

~" The convention for curvature adopted here is that: 

[Vc, Val ~b = R~b,~a~a 

and RClaclb = Rab ; in spinors RABA, B, = -- 2qaABA, B, + 6A eABe A'B' and PABA'B' = 
A eABeA' B' -- ebABA, B, (see Penrose, 1968b). 
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A local twistor Z a may be expressed in terms of its spinor parts thus: 

Z a = e ~  Z A + e aA'ZA, (2.1) 

e~A ' where the operators e~A, are as defined above, and in general give a non- 
constant correspondence between the spinor parts and the local twistors. (In 
equation (2.1)ZA' is a spinor such that in flat space-time V R s , Z  A = - i e R a z s , ) .  

Under a conformal rescaling, the local twistor Z e is invariant: 

Z ~ --, 2~ = Z ~ 

whilst the spinor parts transform as follows: Z A -+ ~,4 = Z A and Z A, -+ ZA' = 
Z A' + i"[BA,Z B. 

Hence the spinstors eeA, e c~.a' undergo the following transformations: 

eaA -+ e~A = e% -- i%~, e ea~' 

eOA ' _> goA' = eC~A' 

The complex conjugate expressions are: 

era4' "+ eo_4' = eaA' + iTBA' eBa 

Using these results it immediately follows that: 

~% =8% 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

3. Covariant Derivative 

The local twistor covariant derivative is defined by the equation: 

V ~ = eRo eas' VRS '  (3.1) 

where Vp, s '  is the spinor covariant derivative. The derivative (3.1) is the most 
obvious one to choose, and has a number of desirable properties, but it does 
not span the space of two-index local twistors, since a general two-index local 
twistor would have four non-zero spinor parts; as will be seen, the definition 
(3.1) leads to consideration of a six-index conformally invariant curvature 
twistor with only three non-zero spinor parts. V ap defines a mapping of local 
twistor spaces: 

o~ o 

and satisfies lineafity and the Leibniz rule. This covariant derivative also 
commutes appropriately with contraction, complex conjugation, and index 
substitution, and has the additional properties: 

-V % =V % = eSePR'VsR' =V % 
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i.e. 

V ~ = ~  ° o (hermiticity), and V % = e% e as' VRs, = 0 

A further important requirement is that the local twistor theory should be 
compatible with the global twistor theory of flat space-time, and for this 
reason two more properties of the local twistor covariant derivative are 
specified, thus: 

(1) if the space-time is conformally flat, the equationV%Z ~ = 0 has four 
linearly independent solutions over the field of complex numbers C ,  
which correspond to global twistors, i.e. the covariant derivative is 
integrable; 

(2) the covariant derivative of a local twistor is conformally invariant, i.e. 
^ ^ 

v%z :v%z 
These conditions are both satisfied by selecting a derivative which acts on the 
spinstors as follows: 

Vns ,  e %  = - iP RAs' B' e ~ '  (3.2) 

VIES' e ~-4' = ie s,A'e~ R (3.3) 

with the complex conjugate expressions: 

Vies' eaA' : iPRBs'  A' e% (3.4) 

VIES' eA~ = - - i e ~  e ~ ,  (3.5) 

these equations being conformally covariant; unfortunately, it is unclear as to 
whether this procedure leads to a unique definition of a covariant derivative 
with the specified properties, but there seem to be no other simple spinor 
expressions which would suffice (presumably spinor terms involving the Weyl 
spinor g'ASCD and its derivatives could be involved). 

To show that the covariant derivative o f Z  ~ has the stipulated properties, 
it is necessary to calculate the spinor parts of the derivative, as follows: 

V % Z  ~ = eRp e os' VRs , ( e% Z A + eaA'ZAO 

: eRo e °s '  {e~ (Vies,Z A + i e R A Z s  ,) 

+ e ~ ' ( V R S , Z 4  , -- i P t ~ s , w Z B ) )  

using equations (3.2)-(3.5). 
Therefore, the spinor parts of the covariant derivative are just the con- 

formally covariant spinor equations (1.2) and (1.6) discussed earlier, and the 
conformal invariance o f V ° o Z  ~ stems from the covariance of these equations 
and that of the equations (3.2)-(3.5). 

The spinor equations (1.2) and (1.6) which form the spinor parts of the 
local twistor covariant derivative define the operation of local twistor trans- 
port, which in flat and conformally flat space-times can be shown to be related 
to the operation of conformal Killing transport (Geroch, 1969, 1970). More 
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specifically, if ~a = coA ~)A' is a null conformal Killing vector, and the con- 
formal Killing transport equations for sa are written in spinor form, in con- 
formally flat space-time they are the same spinor equations as those defining 
the local twistor transport of  a local twistor Z °~ = (co A, rrA') where 
VRS' co A = --ieRATrS '. It is hoped to extend this idea in a later paper. 

The integrability condition for V ~ follows from the fact that in conformally 
fiat space-time, spinors Z A, Z A, can be found such that: 

Vp3,Z A = -- ieRAZs , and VRs,Z A, = iPRBS'A'Z B 

so that the local twistor Z ~ defined from Z A and Z A, obeys the condition 
V ° o Z  = = 0. Also, by a suitable conformal transformation, PRBS'£ = 0 when 
VRS,ZA, = 0, Then 

ZA, = ZoA' 

ZAx = ZAo -- ixAA'ZA' 

where x a is the position vector of  the point x with respect to the origin (9. 
Further, considering the equations defining the derivative of a spinstor, and 
by a suitable conformal transformation, VRS' e~A = 0. Hence, there exist 
solutions of  the spinstor equations given by: 

xeaA = e ~ A 

e ~ '  = e ~ '  + ixAA'g% 
x 0 

It is then evident that Z a = Z ~, i.e. Z a defines a global twistor through O and 
x 0 

the covariant derivative is integrabte. 

4. Torsion and Curvature 

A consequence of the equations (3.2)-(3.5) is that there exists a torsion 
twistor, i.e. [Vua, V %  ] ¢ ~ 0, for a scalar function ¢, since V %¢ = e ~  e~s'VRS'¢, 
and the second derivative is: 

V"kVao¢  = eLk e gM' VLM' ( eRp e os 'V  RS" ¢ ) 

= eLetZVf(eR o e a S ' V L M "  R S ' ¢  -- iepM'eeS'eLRWRS'¢ 

+ i e°LeR O eM 'S' VRS' ~) 

Then 

where 

as 3 
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is the torsion twistor and has the following properties: 

(i) r~°y - T[~pt~ ] 

The brackets here are interpreted as follows: 

w [ ~ ]  = ½(w~ ~ - W ~  ) 

also v ( g )  = ½ ( v ~  + v ~ )  

37 

(4.2) 

,r, xo~ = 0 (4.3) (ii) • ~,p¢ 

(iii) r~;~ = i(45%5~ - 5 ~ 5 5 )  (4.4) 

(iv) T~J°~ is hermitian, i.e. 

where 

r~;°~ - - ~ - T ~  

- as TXp[3 T f ~  = ~ac~ 

(4.5) 

(v) T~.~ is conformally invariant, i.e. 

T f ~  = T~;;  (4.6) 

This follows from (2.6). 
(vi) r f ~  is covariantly constant, i.e. 

V ~ T f ~  - 0 (4.7) 

this being essentially due to the fact that V v~% = 0, which is easily 
demonstrated. 

The second derivative and commutator of derivatives of a local twistor Z ~ 
can be calculated and expressed in terms of spinor parts. The commutator in 
fact becomes: 

[ v " ~ , v  G p l z ~ - - c ~ z ° "  ~ + r ~ j v ~ z  ~ (4.8) 

where 

C ~  = eLx e~ 'eRp  e°S'{e% { [VIM', VRS'] z A  
otA ' c + (eLApRBS'M ' -- eRApLBM's,)Z B} + e ~[VLM', VRs ']ZA'  

+ PLRM'A' ZS '  -- J~RLS 'A' ZM' -- i z B  (VLM'  PR BS'A' -- 

x VRS' PLBM;4')} } (4.9) 

The spinor parts of this expression can be simplified by using the following 
lemmas: 

Lemma I 

[~LM", V R S '  ] ZA + @L A PRBS'M' -- eR A PLBM:S') ZB = 6M'S' OxrBALR Z B 
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Proof- 

[VLM', VRS'] ZA = 6M'S'E]LR Z A + 6LR E]M'S 'ZA 

where: 
t 

DLR = %'(LYe) 
DLR Z A = (q~BALR -- 2AeB(L eR) A )Z  B 

[2]M's'Z A = qSBAM's'ZB (Penrose, 1968b) 

The result then follows since the terms in A disappear due to the skew- 
symmetry of the metric spinor, and the terms in d~AB A'B' reduce to a spinor 
expression skew in three indices. 

Lemma II  

[~LM' ,x~ RS' ] ZA' + PLRM'A'Zs'  -- PRLS'A 'ZM' = CRL ~JB'A 'M's'ZB ' 

The proof is similar to that in Lemma I. 

Lernma II I  

VRs'PLBM'A' -- VLM'PRBS'A ' = eS'M'VXA"PXRLB + eRL V X ' B ~  X'~S'A ' 

Proof  

The spinor Bianchi identity may be written: 

V XA'xItxRL B "= ~ M '  R CPLBM' A' -- 2 e R (LVB)A'A 

Using the symmetry properties of the Weyl spinor, it follows that: 

2VXA ' xlt XRLB = --vM'R PLBM'A' -- V S'L PRBS'A' 

and from the properties of the metric spinor: 

2 6S'M'VXA'~XRLB = 

(VRs,PLBM'A' -- VLM,PRBs'A') -- (VRM, PLBs, A , -- VLs,PRBM,A') 

The required result is obtained on taking the complex conjugate of this, and 
combining the two expressions. 

Collecting these results together, 

CxplSaaTfl = 

eLx e wvl eRpe aS {eaA (eM,S,~BALRZ B) + e aA' [6RL ~B  A'M's'ZB' 

+ iZZ( M'S'VXA'q'xRL. +  RLV ? 

and 

Cuao~ = 
Xpt3 

eLx eUM'eRoeaS'{ eB ~ [e~A eM'S'XItBALR + ie~A'@RL U X'B qd X,M,S, A, 

+ ¢3S'M'~XA'tItxRLB)] + eg~,e eA gRL'tIIBA'M'S' } (4.t0) 
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However, "xo~ is anti-hermitian, i.e. "~xp# - -~Xp#, so that the curvature 
twistor is defined as follows: 

which is hermitian. Hence: 
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K V • C •  _ ;,,~vaa (4.11) Xp# - "~Xp# 

[Vux,V~o]Z a = ;~'i*ac~7# T,OVw~ 7a 

with the conjugate expression: 

(4.12) 

and 

It can be seen that the spinor parts of the curvature twistor involve, apart 
from the metric spinor, only the Weyl spinor and its contracted first deriva- 
tive, together with the complex conjugates of these. The main properties of 
the curvature twistor are summarised below: 

(i) skew-symmetry: 

K~ : K u~ oa ~ [xp]~; K[e/p.~] = 0 (4.14) 

(ii) contraction on any two indices gives zero: 
/2(lff 

K x p  v = 0 (4.15) 

• r.,-/XOa 

(iii) i~ conformally fiat space-ume ~xp~ = O; 

(iv) K ~  is hermitian, by definition; 
(v) K ~  is conformally invariant. 

Consideration of the expressions V[xaVu#V~] ¢ and V [x~vuCVvu]Z ~ 
leads to two further identities satisfied by the curvature twistor; these are: 

and 

( ~ u  v;~.uK a_ £ k  p -gpK + X #  l z v ; k K ' ~  "r .4. 
u r~a~.u .rz~C}ya u zz~Va~jV ~:%u:O 

• [ • ' ,  p-/,~V' 1 /~ ,1rip [~j~,(z'P 1OK 
L a~'--,Gy ] "r + ~ cr La~3~ 3' J p r  = 0 

The corresponding tensor indenities are: 

R[~4  a + Vf~G< d + r [ J G ] / :  0 

V [ a R b c l d  x + T[abYRc]ycl x = 0 

where Va is now a covariant derivative with torsion; note that in the first 
local twistor identity theV rK¢ cannot be cancelled out since it does not span 
the space of two-index local twistors. 

[Vux,Vap]Za = ~gua#Z + T~,~V%Za (4.I3) 
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A torsion-free derivativeS% can be obtained fromVap ; the defining 
equations are as follows: 

~ SZe' =VSZ~ - i65z°2  I 

(4.16) 

O S w e  = v s w e  + 2 wo 

and 

@ ~ ¢  = V % ¢  (4.17) 

A simple calculation shows that: [<~ux,<~p]¢ = 0. It also ensues that: 

[<~ u x,<~°o ] Z ~ = - i j{"  ~g~Z 3 (4.18) 

where 

.3f'~g~ = K#~Z - ¼r#~  (4.19) 

ff{~g~ is the curvature twistor associated with the operator <~ap. evidently, 
~ ) ( (~  does not vanish in general in flat space-time (since T f ~  ~ is non-zero), 
and therefore @ep is non-integrable in flat space-time. 

Appendix 
Generation of Con formally Invariant Spinors 

In this appendix, it will be shown that conformally invariant spinor 
expressions can be generated by use of the local twistor covariant derivative. 
It will be seen that some of the spinor expressions obtained here can be 
generalised; the main spinor results are stated in Lemmas AI, AII, and AIII. 

A general (non-zero) local twistor defines at least one non-zero conformally 
invariant spinor, which is obtained by expressing the local twistor in terms of 
its spinor parts, and locating the spinor expression with the greatest number 
of 'contravariant' indices; consider, for example, a non-zero local twistor 
l+~j y, which may be expressed in terms of its spinor parts thus: 

W,~ y = e~A eI3B, e~ cWAB'C + e~A'e~B,e.,; CWA B'C 
+ eaA eB[3e"r C wAB C +... 

If W AB'c is non-zero, then it is conformally invariant; if W AB'c = 0 then each 
of WA 'B'c, WAB c, wAB'c' is conformally invariant, and if they are all zero the 
process may be repeated until a conformally invariant spinor is obtained 
(there must ~e at least one if W~t~'r ~ 0). Applying these considerations to 

am --B' the twistor K ~  shows that eM'S'XItBALR and eRL'I' A'M'S' are both con- 
formally invariant. Forming the covariant derivative of K ~  does not im- 
mediately lead to a new conformaUy invariant spinor due to the torsion terms, 
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but these terms may be eliminated by suitable symmetry and skew-symmetry 
operations. When this procedure is carried out, a local twistor with one spinor 
part is obtained, and it can be shown that this spinor expression is essentially 
the spinor defined by the Bach tensort. Hence, the spinor is termed the Bach 
spinor, and the twistor produced from it is the Bach twistor. The calculation 
is outlined below: 

v (70z V r K ~  v as = WT~ + torsion terms 

is the Bach twistor, and 

BBRA'S' = B(BR)(A'S') : (VXA'VYS' - P ~ ' )  TBRxY 

is the Bach spinor. 

-~ The Bach tensor is defined by: 

Bab ='Tc~TdCcabd -- ½pCdCcabd (Szekeres, 1968) 

It is of  interest in the present context  since it transforms under conformal transformation 
as a conformal density of  weight - 2 ,  i.e. Bab = ~-2Bab, and is algebraically independent  
of  the Weyl tensor. It is represented in spinors by: 

BABA'B' = QABA 'B' + QABA'B' 
where 

QABA 'B' = QABA 'B' ( ~ %  ,~DB, CD = -" P~4'B') qtABCD 

The Bach tensor has the additional properties (which are readily seen in its spinor form), 
that:  Bah = B(ab), andVaBab = O. 

(A.1) 

(A.2) 

where: 

eTr e vN' eLx e~ 'eRp e°S'ieB~e~'. [¢ lVi 'S' (eA 'N' A qI B TLR -- d)TAN'A' qff BA LR 

X + -- , XlITBN,B,~ItB'A,M,S, + VrN'V A'~XRLB) eLR(eBTA'PAM'N'S" -- 

+ VTN,VX'e~I'X,M,S~,)I 
• B ~ - -  + e~B'e~ [- WLRV T'PA'M'N'S' -- ieN;8'eM'S'VXA' q~XRLT] 

+ e~B,e~A [eN,B'eM,S, q2TALR + eT A eLR ~ttBM'N'S']} 

Then 

W[vuIa~ v oc~ evN'eLxeUM'eRpeZS'(Bt3eO~A'{eM,N,eTLBBRA,S, } 

where 
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The spinor result can be generalised as follows: 

L e m m a  A I  

- - P f f t ' B ' ) X A B . . .  L transforms under a conformal rescaling as a 
conformal density of  weight - 2 ,  where XAB... z is a totally symmetric spinor 
with q indices (q/> 2), and which is conformally invariant, i.e. 

XAB... L = X(AB... L ) = ~ t B . . .  L 

The result can be proved directly by spinor methods, or by constructing the 
local twistor 

such that: 

yfl, uaa v [ g O ] a  = vr#O]~ 
,y8 .. .  k = --~3"8 . . ,  k) " [ f13 ' J (6  . . .  X) 

y~qtsoa = e~ ' eOS 'eB~  eCy eLx {e~A i eM'S' XA BC... L 8.. .k . . .  

+ e°A'eM'S'VXA ' XXBC... L )  

( vyu )  o~ and considering the def iva t ivev  [r ~! v8 ... ~,, 

Another example of  a conformaUy invariant spinor expression is obtained 
by contracting the curvature twistor K ~  with the totally skew twis tor t  
euoa8 ; a local twistor with one spinor part only is thell formed: 

%oa8 K ~  = 2iq~xpfl8 

where 

xl~ h p ~  = eLh eRoeBf leDs  Cff L R B D  = "q~r (kO~8) 

From this local twistor a hermitian, eight-index, valence [4] local twistor can 
be defined: 

ff~Kk~.v = ,T, Kk#V _ ~ckpv 
qJat~78 ~ a ~ 8  - ~a/~78 

• • 0 K~k~V On forming the derwatwe: V p'I~aflv~ and taking skew-symmetries on the 
indices p, a and o, a the following spinor result is obtained: 

L e m m a  A l l  
- x '  , x , i ,x  V ~ x '  xlI A'B'C ~ X X  'xIF A B C -- ABC X X  A B C '  is a conformal density of  

weight - 2 .  This expression may be further refined to give the more general 
result: 

Lernma A I I I  
X X '  The expression flX,I,XXN,~TXX'axA ... C -- ~XA ... CV  flX'L'... N'  is a con- 

formal density of  weight (2n - 2), where flX'L'... N' is a totally symmetric 

t %aa8 = e[~aa8 ] ; %oaSe  Iz°a~ = 24 .  T h e  s p J n o r  p a r t s  o f  th i s  t w i s t o r  a r e  o f  t h e  

f o r m  eMS e A 'D'. 
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spinor of valence [o], q ~> 1, and is a conformal  densi ty of  weight n, and 
C~XA... C is a tota l ly  symmetr ic  spinor of  valence [po], p ~> 1, and is also a 
conformal  densi ty  of  weight n. 
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